# **USN**

## Eighth Semester B.E. Degree Examination, December 2011

### System Modeling and Simulation

Time: 3 hrs.

Max. Marks:100

Note: 1. Answer any FIVE full questions, selecting at least TWO questions from each part. 2. Statistical tables A.6 and A.8 from the text book can be provided.

#### PART - A

List any five circumstances, when the simulation is the appropriate tool and when it is not. (10 Marks)

Explain the steps in a simulation study, with the flow chart.

(10 Marks)

One company uses 6 trucks to haul manganese ore from Kolar to its industry. There are two 2 loaders, to load each truck. After loading, a truck moves to the weighing scale to be weighed. The queue discipline is FIFO. When it is weighed, a truck travels to the industry and returns to the loader queue. The distribution of loading time, weighing time and travel time are as follows:

> 5 10 15 10 10 10 5 Loading time: 12 16 Weigh time: 12 12 12 16 60 100 40 40 80 Travel time:

Calculate the total busy time of both the loaders, the scale average loader and scale utilization. Assume 5 trucks are at the loaders and one is at the scale, at time "0". Stopping (10 Marks)  $T_E = 64 \text{ min.}$ 

b. Explain simulation in GPSS, with a block diagram, for the single server queue simulation.

(06 Marks)

Explain the following:

i) System

ii) Event list

iii) Entity

iv) Event.

(04 Marks)

Explain discrete random variables and continuous random variables, with examples. 3

(10 Marks)

b. Explain any two discrete distributions.

(05 Marks)

c. Explain the following continuous distribution:

- Uniform distribution i)
- Exponential distribution. ii)

(05 Marks)

Explain the characteristics of a queuing system. List different queuing notations. (10 Marks)

Explain any two long-run measures of performance of queuing systems.

(10 Marks)

#### PART - B

- Explain the two different techniques used for generating random numbers, with examples. 5
  - The sequence of numbers 0.44, 0.81, 0.14, 0.05, 0.93 has been generated. Use the Kolmogonov-Smirnov test with  $\alpha = 0.05$  to determine if the hypothesis that the numbers are uniformly distributed on the interval [0, 1] can be rejected. Compare F(X) and S<sub>N</sub>(X) on a (10 Marks) graph.

- 6 a. Explain inverse-transform technique of producing random variates for exponential distribution. (05 Marks)
  - b. Generate three Poison variates with mean  $\alpha = 0.2$ . (05 Marks)
  - c. Explain the types of simulation with respect to output analysis. Give at least two examples.

    (10 Marks)
- 7 a. Explain Chi-square goodness of fit test. Apply it to Poisson assumption with  $\alpha = 3.64$ . Data size = 100 and observed frequency  $O_i = 12, 10, 19, 17, 10, 8, 7, 5, 5, 3, 3, 1$ . (10 Marks)
  - b. List the steps involved in the development of a useful model of input data. (05 Marks)
  - c. Explain Chi-square goodness-of-fit test for exponential distribution, with an example.

(05 Marks)

- 8 a. Explain, with a neat diagram, model building, verification and validation. (10 Marks)
  - b. Explain any two output analysis for steady-state simulations. (10 Marks)

\* \* \* \*